KwaZulu-Natal
Provincial Overview
KwaZulu-Natal is the third smallest province in South Africa with an area of 94,361 square kilometres, making up 7.7% of the country’s land area (Department of Agriculture, Environmental Affairs and Rural Development 2004). It is situated on the east coast of South Africa along the Indian Ocean, bordering Swaziland, Mpumalanga and Mozambique in the north, and Lesotho, the Free State and the Eastern Cape in the west. KwaZulu-Natal is divided into one metropolitan municipality (eThekwini Metropolitan Municipality) and 10 district municipalities (Figure 1), which are further subdivided into 43 local municipalities. The province has the second largest provincial economy in South Africa after Gauteng contributing R206,8 billion (16.5%) towards the country’s gross domestic product. The province has an estimated population of 10,267,300, which is the second largest of all the provinces (20.6%) (Statistics South Africa 2011; Department of Agriculture, Environmental Affairs and Rural Development 2004).The manufacturing, agriculture and forestry sectors which are spread around the province make the most notable contributions to the province’s gross domestic product.

Greenhouse Gas Data
Electricity Sales
There are a range of sources of Greenhouse Gas (GHG) emissions at the provincial and district level. One of the main sources of GHGs is from electricity. Although the GHGs associated with the generation of electricity is recorded at a national level, provinces and municipalities typically record the GHGs associated with the sale of electricity. The map below is a summary of the GHGs from the sale of electricity in the province. This data is sourced from Stats SA for the provinces and divided into district data by the proportion of houshold numbers in the district.

Liquid Fuel Sales
A second major source of GHGs is from the sale of liquid fuels. This includes jet fuel, aviation gasoline, diesel, furnace oil, LPG, paraffin and petrol. The map below is a summary of the GHGs from the sale of liquid fuels in the province. Each fuel is converted to Gigagram Carbon Dioxide equivalent (GgCO2e) using specific emission factors from the Intergovernmental Panel on Climate Change Emission Factor Database.

Key Climate Hazards
Increasing temperatures
The figure below shows projected changes in annual average temperatures, highlighting increasing temperatures throughout the province for the period 2021-2050 under the RCP 8.5 scenario. By 2050, the province is projected to be affected by higher annual average temperatures, which will adversely affect water and food security. Evaporation rates will also likely increase and agricultural outputs may reduce.

Increasing rainfall variability
The figure below shows projected shifts in annual average rainfall throughout the province between 2021-2050 under the RCP 8.5 scenario. Annual average rainfall amounts vary across the province. There is uncertainty regarding projected future rainfall.

Increasing storms and flooding events
The figure below shows projected changes in the annual average number of extreme rainfall days throughout the province over the period 2021-2050 under the RCP 8.5 scenario. Increases in the number of rainfall days are likely to result in an increase in intense storms, and flooding events across the province.

Changing Biomes
The current delineation of biomes is depicted in the figure below, with the predicted shift in biomes shown in the following figure based on a high-risk scenario. The biomes have varying sensitivities to the projected impacts of climate change which are further exacerbated by issues such as the fragmentation of natural areas and unsustainable water usage rates.


Climate Change Vulnerability
The CSIR Greenbook has developed and refined a vulnerability assessment framework by collating relevant data into composite vulnerability indicators. Four local municipality level vulnerability indices were computed and are shown spatially below.
Socio-Economic Vulnerability
Social inequalities are the factors that affect the susceptibility and coping mechanisms of communities and households. Indicators for social vulnerability attempt to consider the sensitivity, response and recovery from the impacts of natural hazards. The CSIR Green Book has developed a socio-economic vulnerability index that is measured on a scale from 1 (low vulnerability) to 10 (high vulnerability). The map below shows the Socio-Economic vulnerability score of each municipality in the province visually.

Environmental Vulnerability
Environmental vulnerability describes the vulnerability and risk to the natural environment and the impacts on the ecological infrastructure of which surrounding settlements are dependent. The environmental risk of an area includes ecosystems, habitats, physical and biological processes (reproduction, diversity, energy flows, etc). The CSIR Green Book has developed an Environmental Vulnerability Index that is measured on a scale from 1 (low vulnerability) to 10 (high vulnerability). The map below shows the environmental vulnerability score of each municipality in the province visually.

Physical Vulnerability
Physical vulnerability describes the physical fabric and connectedness of settlements (buildings and infrastructure) and focuses mainly on the conditions that exist before a hazard occurs and the expected level of resulting loss. The CSIR Green Book has developed a physical vulnerability index that is measured on a scale from 1 (low vulnerability) to 10 (high vulnerability). The map below shows the physical vulnerability score of each municipality in the province visually.

Economic Vulnerability
Economic vulnerability describes the potential risks posed by hazards on economic assets and processes. Potential hazards can include job losses, increased poverty and interruptions in business activities. The CSIR Green Book has developed an economic vulnerability index that is measured on a scale from 1 (low vulnerability) to 10 (high vulnerability). The map below shows the economic vulnerability score of each municipality in the province visually.

References
- CSIR. 2019. ‘Green Book | Adapting South African Settlements to Climate Change’. Green Book | Adapting South African Settlements to Climate Change. 2019. www.greenbook.co.za.
- Le Roux, A, E van Huyssteen, K Arnold, and C Ludick. 2019. ‘The Vulnerabilities of South Africa’s Settlements’. Green Book. 2019. https://pta-gis-2-web1.csir.co.za/portal/apps/GBCascade/index.html?appid=280ff54e54c145a5a765f736ac5e68f8.
- SANParks. 2011a. ‘CCAB – Current Biome Delineations 2011 [Vector Geospatial Dataset]’. Available from the Biodiversity GIS website. http://bgis.sanbi.org/SpatialDataset/Detail/484
- SANParks. 2011b. ‘CCAB – High Risk Scenarios – Biome Delineations 2011 [Vector Geospatial Dataset]’. Available from the Biodiversity GIS website. http://bgis.sanbi.org/SpatialDataset/Detail/486.
-
Stats SA 2020: Electricity Sales (ES) from Stats SA by Province Source: http://www.statssa.gov.za/?
page_id=1854&PPN=P4141&SCH= 72843 IPCC 2020. Intergovernmental Panel on Climate Change Emission Factor Database https://www.ipcc-nggip.iges.or.jp/EFDB/main.php